Skip to content

Seeking Single Cells’ Secrets

NIH Awards Nearly $8 Million in New Grants

Press Release

The National Institutes of Health has awarded grants totaling $7.9 million in 2014 to 25 research teams who are unraveling the workings of single cells, as part of an effort to spur development of personalized treatments that target disease at the cellular level. The grants are supported by the NIH Common Fund’s Single Cell Analysis Program (SCAP).

“Cells are the most basic form of life; they make up every tissue and organ system in our bodies,” said James Anderson, M.D., Ph.D., director of NIH’s Division of Program Coordination, Planning, and Strategic Initiatives (DPCPSI).  “Most cells are healthy, but this can change.  They can become cancerous, get infected by viruses, undergo cycles and aging.  With these awards, we are making an investment that holds promise for widespread advances across medicine.”

This year’s SCAP grants fund applications submitted in response to requests for applications issued last December. 

One group of projects is validating and refining already established technologies for studying the biological properties of single cells:

  • Modeling how tissue properties of cells emerge during development
  • Detecting genetic changes in live animals
  • Manipulating cells with submicron precision
  • Tracking fat metabolism using millisecond technology
  • Detecting the tiniest genetic variation
  • Discovering how cells renew themselves and differentiate as they develop
  • Profiling gene expression in a cell’s nucleus to identify early protein signatures
  • Optimizing “disease-in-a-dish” analysis

One group of grants is pioneering exceptionally innovative new technologies:

  • A genetic imaging tool to label vast numbers of cell lineages
  • Microsecond spectroscopy to repetitively assess a single cell in a living organism
  • A high definition cell “printer” based on precise fluid mechanics, robotics and microscopy
  • Optically guided technology to identify cell types that give rise to different tissues
  • Light-induced cellular gene changes in a live vertebrate animal
  • Gene expression sensors that report out changes among cells in living tissue
  • Real-time, micro-level scans tracking a transplanted cell in a live mouse
  • Spectrometry so sensitive that even subcellular components can be chemically analyzed

And one group of grants adds a single cell component to already active projects:

  • How a key immune cell can be either an acute defender or a memory cell
  • How a mouth bacterium can cause minor irritation or aggressive periodontal disease
  • Tracking environmentally triggered changes in a gene in a formative human cell
  • Characterizing how micro-level gene expression changes in a cancer cell suppress tumors
  • How a gene regulator exerts effects on different classes of target genes
  • Genetic mechanisms by which intestinal lining cells are regenerated
  • Targeted genetic alteration of a key cellular process by which genes are switched off
  • Characterizing the workings of immune cells that target leukemia
  • Genetics of a disease-in-a-dish disease model derived from a type of heart cell

For a detailed description of all funded SCAP grants see: http://commonfund.nih.gov/singlecell/fundedresearch.

SCAP is funded through the NIH Common Fund, and managed by the NIH Office of the Director in partnership with the National Institute of Biomedical Imaging and Bioengineering and National Institute of Mental Health, both part of NIH.

HIV infecting T-Cell

HIV, the AIDS virus (yellow), infecting a human immune cell.
Source: Seth Pincus, Elizabeth Fischer and Austin Athman, National Institute of Allergy and Infectious Diseases, National Institutes of Health.

###

The NIH Common Fund encourages collaboration and supports a series of exceptionally high impact, trans-NIH programs. These new programs are funded through the Common Fund, and managed by the NIH Office of the Director in partnership with the various NIH Institutes, Centers and Offices. Common Fund programs are designed to pursue major opportunities and gaps in biomedical research that no single NIH Institute could tackle alone, but that the agency as a whole can address to make the biggest impact possible on the progress of medical research. Additional information about the NIH Common Fund can be found at http://commonfund.nih.gov.

About the National Institute of Biomedical Imaging and Bioengineering (NIBIB): NIBIB’s mission is to support multidisciplinary research and research training at the crossroads of engineering and the biological and physical sciences. NIBIB supports emerging technology research and development within its internal laboratories and through grants, collaborations, and training. More information is available at the NIBIB website: http://www.nibib.nih.gov/.

About the National Institute of Mental Health (NIMH): The mission of the NIMH is to transform the understanding and treatment of mental illnesses through basic and clinical research, paving the way for prevention, recovery and cure. For more information, visit the NIMH website.

About the National Institutes of Health (NIH): NIH, the nation's medical research agency, includes 27 Institutes and Centers and is a component of the U.S. Department of Health and Human Services. NIH is the primary federal agency conducting and supporting basic, clinical, and translational medical research, and is investigating the causes, treatments, and cures for both common and rare diseases. For more information about NIH and its programs, visit the NIH website.

NIH…Turning Discovery Into Health®